Catalytic hydrogenation of esters is a sustainable approach for the production of fine chemicals, and pharmaceutical drugs. However, the efficiency and cost of catalysts are often the bottlenecks in the commercialization of such technologies. The conventional approach of catalyst discovery is based on empiricism that makes the discovery process time-consuming and expensive. There is an urgent need to develop effective approaches to discover efficient catalysts for hydrogenation reactions. We demonstrate here the approach of machine learning for the prediction of out-comes for the catalytic hydrogenation of esters. Our models can predict the reaction yields with high mean accuracies of up to 91% (test set) and suggest that the use of certain chemical descriptors selectively can result in a more accurate model. Furthermore, cata-lysts and some of their corresponding descriptors can also be pre-dicted with mean accuracies of 85%, and >90%, respectively. 2-Bromo-5-cyclopropylpyrimidine structure Bathocuproine web PMID:36628218
Headquartered in New Jersey, USA, ChemScence is a global leading manufacturer and supplier of building blocks and fine research chemicals. We now have branches in Sweden and India. Our mission is to pave the way for drug discovery by providing the most innovative chemicals with the highest-level quality for a reasonable price.
Our Catalog Products
We deliver an extensive portfolio of products, including Building Blocks,Catalysts&Ligands,Synthetic Reagents,Material Science and ADC Linkers&Protac,.ChemScene now have over 600000 Building Blocks & Intermediates in our catalog and more than 70000 of them are in stock.
For details, please refer to the ChemScene website:https://www.chemscene.com