For organic semiconductors, the solid-state packings of the π-conjugated molecules or polymers dictate the material electronic, optical, and mechanical characteristics. Combinations of {solution|answer|remedy|resolution|option} and solid-state investigations are often used to establish structure–function relationships, though these connections are often loosely correlated, and experiments in different laboratories can lead to widely variable interpretations. Hence, there remains a need to develop a deeper, more robust understanding of the connections between molecular and polymer chemistry, structure, processing, solid-state order, and materials properties to enable judicious materials design principles. Towards this goal, we employ fully-atomistic molecular dynamics (MD) simulations of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7), a donor–acceptor copolymer that has been widely investigated in the organic solar cell literature, to unravel some of these associations. The MD simulations make use of polymer lengths (masses) and {solution|answer|remedy|resolution|option} concentrations that are consistent with those used in experiment, allowing for a detailed picture to arise as to how variations in the polymer environment can direct polymer structure. Comparisons between experiment and theory suggest that processing history can be an important factor in the polymer structures presumed experimentally that are used to interpret optical and electronic response. The results of these simulations provide specific information into the behavior of PTB7 under different conditions, and showcase how atomistic MD simulations that approach experimentally relevant sizes can be used to develop broader chemical insight that can aid in the design, processing, and characterization of polymer-based organic semiconductors. 3,3′-Oxybis(propan-1-ol) Chemical name 2,2′-Dipyridyl disulfide Price PMID:23907051
Headquartered in New Jersey, USA, ChemScence is a global leading manufacturer and supplier of building blocks and fine research chemicals. We now have branches in Sweden and India. Our mission is to pave the way for drug discovery by providing the most innovative chemicals with the highest-level quality for a reasonable price.
Our Catalog Products
We deliver an extensive portfolio of products, including Building Blocks,Catalysts&Ligands,Synthetic Reagents,Material Science and ADC Linkers&Protac,.ChemScene now have over 600000 Building Blocks & Intermediates in our catalog and more than 70000 of them are in stock.
For details, please refer to the ChemScene website:https://www.chemscene.com